
Microelectronics Reliability a Qualification Workshop Pasadona, California 1999

JPL's Commercial Off-The-Shelf (COTS) Programmer

Methods of Infusion of Reliable COTS Plastic

Parts in NASA Flight Hardware

Mike Sandor & Shri Agarwal 4800 Oak Grove Drive Pasadena, CA 91109

Phone: (818) 354-0681 FAX: (818) 393-4559

Assessment Options for COTS Plastic Parts & Their Relative

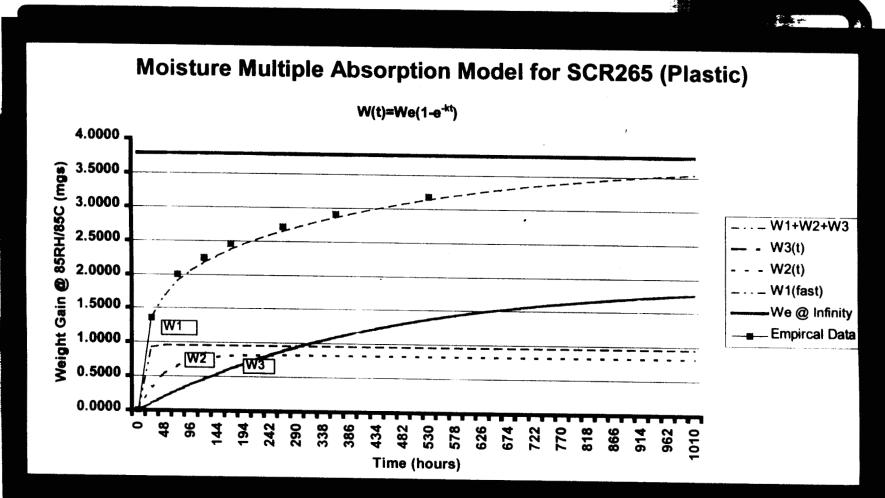
• Temperature/ Humidity		Corrosion	(2)
-------------------------	--	-----------	-----

 Temperature Cycling 	Assembly Defects	(\$\$)
		, , , ,

 Moisture Absorption 		Popcorning	(\$\$)
---	--	------------	--------

• Radiation	TID Degradation	(\$\$\$\$)
-------------	-----------------	------------

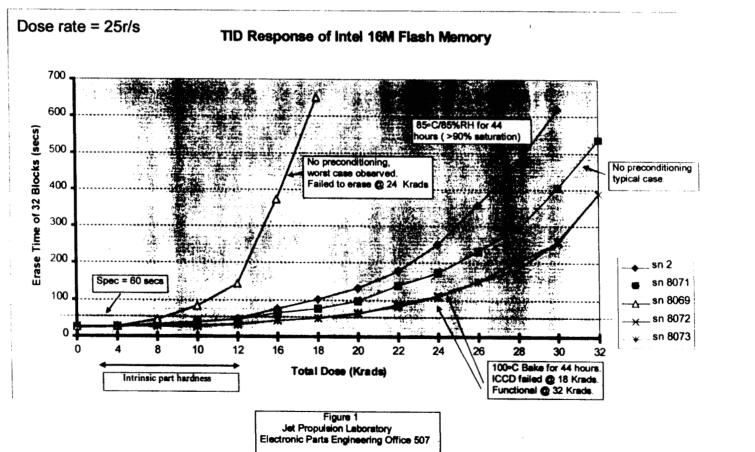
 Outgassing 		Condensables	(\$)
•	7		, , ,


• Glass Transition	Epoxy Stability	(\$\$)
--------------------	-----------------	--------

 Delamination 		Voids/Stresses	(\$)
----------------------------------	--	----------------	------

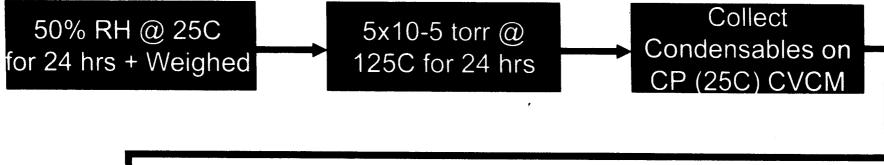
 Upscreening/Burn-in 		Performance/Reliability	(\$\$\$\$)
---	--	-------------------------	------------

• DPA	Manufacturing Quality	(\$\$)
-------	-----------------------	--------



Radiation Results on Plastic Parts

Moisture Absorption / Bake for Intel DA28F016SV in Plastic Package


(0.6 um ETOX IV Process Technology)

Conditions: Test Temperature = 25°C, Vdd = 5.0V, Vpp = 5.0V

Cool & Dry Test
Chamber

Weigh Specimen
& CP for TML

50% RH @ 25C for
24 hrs + Weighed for
WVR

Ref: ASTM E595-93

C-SAM Results (No. of Rejects):

Amplifier - Vendor A

ADC - Vendor B

DC-DC Converter - Vendor C

Top Side: 0/78⁽¹⁾

Top Side: 30/78

Top Side: 0/78

Back Side: 3/78

Back Side: 8/78

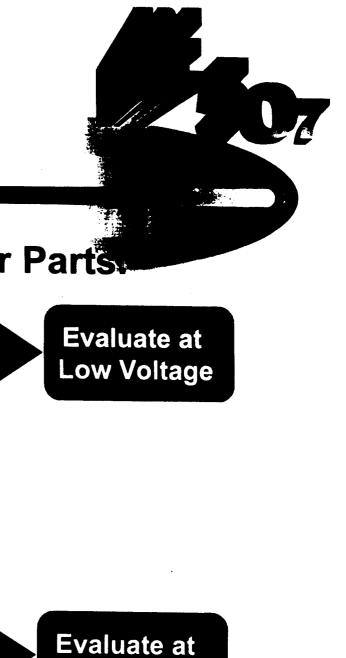
Thru Scan: 16/78

Typical Rejects:

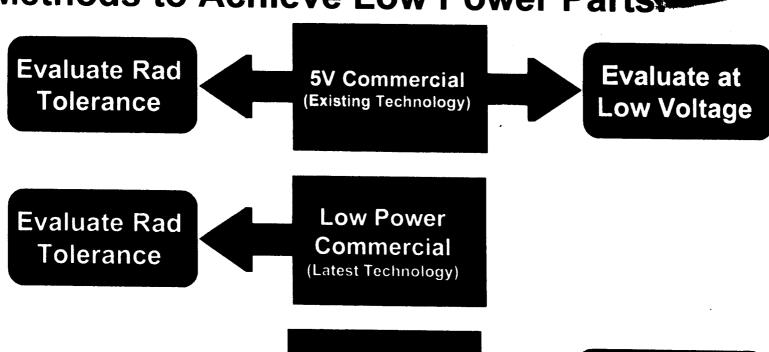
Pass (1)

Fail

Fail



Fail



Fail

Note: Units with delamination are defective and were defined by JPL to be a potential risk to mission success. (1) All units showed 100% delamination caused by a special die top coating. These parts were not rejected. F.A. confirmed a die top coating. This was validated by the supplier as a gel coat and is used to relieve stress of the die and improve performance.

Methods to Achieve Low Power Parts

5V Radiation Hard (Existing Technology)

Evaluate at Low Voltage

IDENTIFY & REVIEW REQUIREMENTS

COST & TAILOR OBJECTIVES

DPA

ELECTRICAL

TEMP CYCLE

C-SAM

ELECTRICAL

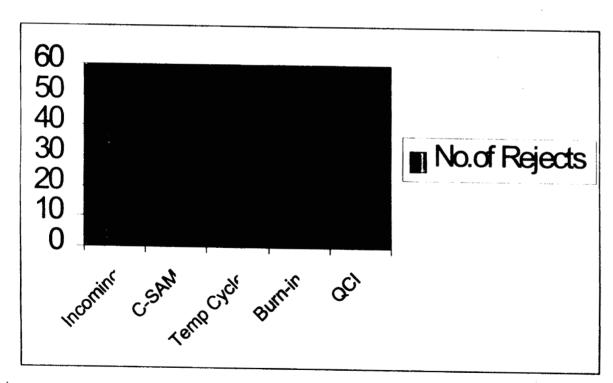
Burn-in

ELECTRICAL

Mini Part Qual (QCI)


ASSEMBLE HARDWARE

ASSEMBLY TEST


ASSEMBLY QUALIFICATION

FLIGHT READY

COTS⁺⁺ Plastic Infusion Baseline Flow (Tailored for MARS01 application/mission requirements)

COTS Upscreening Results**

Incoming = 0.42%

C-SAM = 24.35%

Temp Cycle = 5.55%

Burn-in = 1.28%

QCI = 0.00%

Total = 31.60% (3 types)

Total = 24.8% (5 types)

Figure 15. 10kx SEM micrograph showing metallization layer I over polysilicon layer 2 gates. Metal layer I step coverage was found to be excellent.

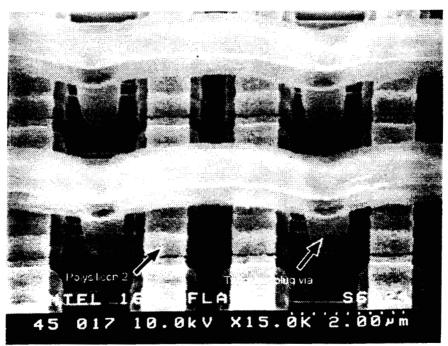


Figure 16 15kx SEM micrograph closeup of metal layer 1 connections to tungsten plug vias within the memory array Metal layer 1 is a multilayered structure of aluminum sandwiched between Ti/W layers Nominal metal 1 thickness was measured to be 0.5 microns

Infusion Methods to Insure Low Risk COTS in Critical Span

15 yr mission:

10 yr mission:

5 yr mission:

1 yr mission:

Eull Qual/Upscreen

Mini Upscreen/Qual

